enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);

  3. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d is the number of positive divisors of n, including 1 and n itself; σ is the sum of the positive divisors of n, including 1 and n itself; s is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n; a deficient number is greater than the sum of its proper divisors; that is, s(n) < n

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...

  5. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    Divisor function d(n) up to n = 250 Prime-power factors In number theory , a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors . Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.

  6. Prime signature - Wikipedia

    en.wikipedia.org/wiki/Prime_signature

    In particular, τ(n) equals the product of the incremented by 1 exponents from the prime signature of n. For example, 20 has prime signature {2,1} and so the number of divisors is (2+1) × (1+1) = 6. Indeed, there are six divisors: 1, 2, 4, 5, 10 and 20. The smallest number of each prime signature is a product of primorials. The first few are:

  7. Colossally abundant number - Wikipedia

    en.wikipedia.org/wiki/Colossally_abundant_number

    Colossally abundant numbers are one of several classes of integers that try to capture the notion of having many divisors. For a positive integer n, the sum-of-divisors function σ(n) gives the sum of all those numbers that divide n, including 1 and n itself. Paul Bachmann showed that on average, σ(n) is around π 2 n / 6. [6]

  8. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  9. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.