Search results
Results from the WOW.Com Content Network
A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface. Using the first fundamental form, it is possible to define new objects on a regular surface.
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
Flat and sharp are mutually inverse isomorphisms of smooth vector bundles, hence, for each p in M, there are mutually inverse vector space isomorphisms between T p M and T ∗ p M. The flat and sharp maps can be applied to vector fields and covector fields by applying them to each point. Hence, if X is a vector field and ω is a covector field,
Vector field; Tensor field; Differential form; Exterior derivative; Lie derivative; pullback (differential geometry) pushforward (differential) jet (mathematics) Contact (mathematics) jet bundle; Frobenius theorem (differential topology) Integral curve
In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...
In Hungarian Rhapsody No. 6, Franz Liszt takes the unusual step of changing the key from D-flat major to C-sharp major near the start of the piece, and then back again to B-flat minor. Maurice Ravel selected C-sharp major as the tonic key of "Ondine" from his piano suite Gaspard de la nuit.
where is the Gauss map, and the differential of regarded as a vector-valued differential form, and the brackets denote the metric tensor of Euclidean space. More generally, on a Riemannian manifold, the second fundamental form is an equivalent way to describe the shape operator (denoted by S ) of a hypersurface,
The metric tensor (,) induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat ♭ and sharp ♯. A section A ∈ Γ ( T M ) {\displaystyle A\in \Gamma (TM)} corresponds to the unique one-form A ♭ ∈ Ω 1 ( M ) {\displaystyle A^{\flat }\in \Omega ^{1}(M)} such that for all sections X ∈ Γ ( T M ...