Ads
related to: thermal design for electronic equipment
Search results
Results from the WOW.Com Content Network
Thermal simulations give engineers a visual representation of the temperature and airflow inside the equipment. Thermal simulations enable engineers to design the cooling system; to optimise a design to reduce power consumption, weight and cost; and to verify the thermal design to ensure there are no issues when the equipment is built.
Electronics cooling encompasses thermal design, analysis and experimental characterization of electronic systems as a discrete discipline with the product creation process for an electronics product, or an electronics sub-system within a product (e.g. an engine control unit (ECU) for a car).
An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the device function and application context, and ranges from the minimum operating temperature to the maximum operating temperature (or peak operating ...
The typical efficiency of TEGs is around 5–8%, although it can be higher. Older devices used bimetallic junctions and were bulky. More recent devices use highly doped semiconductors made from bismuth telluride (Bi 2 Te 3), lead telluride (PbTe), [10] calcium manganese oxide (Ca 2 Mn 3 O 8), [11] [12] or combinations thereof, [13] depending on application temperature.
Thermal Conductivity: Theory, Properties, and Applications. Springer Science & Business Media. ISBN 978-0-306-48327-1. Younes Shabany (2011). Heat Transfer: Thermal Management of Electronics. CRC Press. ISBN 978-1-4398-1468-0. Xingcun Colin Tong (2011). Advanced Materials for Thermal Management of Electronic Packaging. Springer Science ...
However, these improving methods are not always practical or possible for electronic equipment. Thermal interface materials (TIM) are a common way to overcome these limitations. Properly applied thermal interface materials displace the air that is present in the gaps between the two objects with a material that has a much-higher thermal ...
Immersion cooling technology encompasses systems in which electronic components are directly exposed to and interact with dielectric fluids for cooling purposes. This includes systems using single-phase or two-phase dielectric fluids, leveraging their thermal capabilities to manage and dissipate heat generated by electronic components.
Different types of noise are generated by different devices and different processes. Thermal noise is unavoidable at non-zero temperature (see fluctuation-dissipation theorem), while other types depend mostly on device type (such as shot noise, [1] [3] which needs a steep potential barrier) or manufacturing quality and semiconductor defects, such as conductance fluctuations, including 1/f noise.
Ads
related to: thermal design for electronic equipment