enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity bit - Wikipedia

    en.wikipedia.org/wiki/Parity_bit

    Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number.

  3. Parity flag - Wikipedia

    en.wikipedia.org/wiki/Parity_flag

    For example, assume a machine where a set parity flag indicates even parity. If the result of the last operation were 26 (11010 in binary), the parity flag would be 0 since the number of set bits is odd. Similarly, if the result were 10 (1010 in binary) then the parity flag would be 1.

  4. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added.

  5. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. [2] Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That ...

  6. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  7. Even–odd rule - Wikipedia

    en.wikipedia.org/wiki/Evenodd_rule

    In the evenodd case, the ray is intersected by two lines, an even number; therefore P is concluded to be 'outside' the curve. By the non-zero winding rule, the ray is intersected in a clockwise direction twice, each contributing −1 to the winding score: because the total, −2, is not zero, P is concluded to be 'inside' the curve.

  8. Odd–even sort - Wikipedia

    en.wikipedia.org/wiki/Oddeven_sort

    The oddeven sort algorithm correctly sorts this data in passes. (A pass here is defined to be a full sequence of oddeven, or evenodd comparisons. The passes occur in order pass 1: oddeven, pass 2: evenodd, etc.) Proof: This proof is based loosely on one by Thomas Worsch. [6]

  9. Wason selection task - Wikipedia

    en.wikipedia.org/wiki/Wason_selection_task

    The rule makes no claims about odd numbers. (Denying the antecedent) If the 8 card is not blue, it violates the rule. (Modus ponens) If the blue card is odd (or even), that doesn't violate the rule. The blue color is not exclusive to even numbers. (Affirming the consequent) If the red card is even, it violates the rule. (Modus tollens)