Search results
Results from the WOW.Com Content Network
A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column summing to 1. A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right ...
The matrix P represents the weather model in which a sunny day is 90% likely to be followed by another sunny day, and a rainy day is 50% likely to be followed by another rainy day. [4] The columns can be labelled "sunny" and "rainy", and the rows can be labelled in the same order. The above matrix as a graph.
Stochastic social science theory is similar to systems theory in that events are interactions of systems, although with a marked emphasis on unconscious processes. The event creates its own conditions of possibility, rendering it unpredictable if simply for the number of variables involved.
A reaction network is a chemical system involving multiple reactions and chemical species. The simplest stochastic models of such networks treat the system as a continuous time Markov chain with the state being the number of molecules of each species and with reactions modeled as possible transitions of the chain. [69]
An example of a stochastic process which is not a Markov chain is the model of a machine which has states A and E and moves to A from either state with 50% chance if it has ever visited A before, and 20% chance if it has never visited A before (leaving a 50% or 80% chance that the machine moves to E).
[1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [3] [4] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains. [5]
A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions.
The Heston model [321] is a popular example, allowing for the volatility of asset prices to follow its own stochastic process. Unlike the Black-Scholes model, which assumes constant volatility, stochastic volatility models provide a more flexible framework for modeling market dynamics, particularly during periods of high uncertainty or market ...