Search results
Results from the WOW.Com Content Network
Elements are distributed among bins Unlike bucket sorting which sorts after all the buckets are filled, the elements are insertion sorted as they are inserted. ProxmapSort, or Proxmap sort, is a sorting algorithm that works by partitioning an array of data items, or keys, into a number of "subarrays" (termed buckets, in similar sorts).
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
The shuffle sort [6] is a variant of bucket sort that begins by removing the first 1/8 of the n items to be sorted, sorts them recursively, and puts them in an array. This creates n/8 "buckets" to which the remaining 7/8 of the items are distributed. Each "bucket" is then sorted, and the "buckets" are concatenated into a sorted array.
The best case input is an array that is already sorted. In this case insertion sort has a linear running time (i.e., O(n)). During each iteration, the first remaining element of the input is only compared with the right-most element of the sorted subsection of the array. The simplest worst case input is an array sorted in reverse order.
JavaScript asynchronous, event-based I/O. Influenced by systems like Ruby's Event Machine, Perl's POE or Python's Twisted. Plenty of modules available. Opera: Futhark: Opera Unite JavaScript is the server-side language used to develop services for the Opera Unite feature of the Opera browser. This is a server built into the browser.
To index the skip list and find the i'th value, traverse the skip list while counting down the widths of each traversed link. Descend a level whenever the upcoming width would be too large. For example, to find the node in the fifth position (Node 5), traverse a link of width 1 at the top level.
This example could be implemented with the Java 8 merge() but it shows the overall lock-free pattern, which is more general. This example is not related to the internals of the ConcurrentMap but to the client code's use of the ConcurrentMap. For example, if we want to multiply a value in the Map by a constant C atomically: