Search results
Results from the WOW.Com Content Network
a prime number has only 1 and itself as divisors; that is, d(n) = 2; a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n.
For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.
In number theory, a highly abundant number is a natural number with the property that the sum of its divisors (including itself) is greater than the sum of the divisors of any smaller natural number. Highly abundant numbers and several similar classes of numbers were first introduced by Pillai ( 1943 ), and early work on the subject was done by ...
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250 In mathematics , and specifically in number theory , a divisor function is an arithmetic function related to the divisors of an integer .
An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
A frugal number has more digits than the number of digits in its prime factorization (when written like the tables below with multiplicities above 1 as exponents). The first in decimal : 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1029, 1215, 1250 (sequence A046759 in the OEIS ).
The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the ...