Search results
Results from the WOW.Com Content Network
The circular flow of income or circular flow is a model of the economy in which the major exchanges are represented as flows of money, goods and services, etc. between economic agents. The flows of money and goods exchanged in a closed circuit correspond in value, but run in the opposite direction.
The problem of potential compressible flow over circular cylinder was first studied by O. Janzen in 1913 [4] and by Lord Rayleigh in 1916 [5] with small compressibility effects. Here, the small parameter is the square of the Mach number M 2 = U 2 / c 2 ≪ 1 {\displaystyle \mathrm {M} ^{2}=U^{2}/c^{2}\ll 1} , where c is the speed of sound .
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
Simple harmonic motion can be considered the one-dimensional projection of uniform circular motion. If an object moves with angular speed ω around a circle of radius r centered at the origin of the xy -plane, then its motion along each coordinate is simple harmonic motion with amplitude r and angular frequency ω .
Streamlines for the potential flow around a circular cylinder in a uniform flow. The flow pattern is symmetric about a horizontal axis through the centre of the cylinder. At each point above the axis and its corresponding point below the axis, the spacing of streamlines is the same so velocities are also the same at the two points.
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.
The laminar flow through a pipe of uniform (circular) cross-section is known as Hagen–Poiseuille flow. The equations governing the Hagen–Poiseuille flow can be derived directly from the Navier–Stokes momentum equations in 3D cylindrical coordinates ( r , θ , x ) by making the following set of assumptions: