Search results
Results from the WOW.Com Content Network
A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours. [2] The gravitational potential difference and thus the delta-v needed to transfer between Mars and Earth is the second lowest for Earth. [186] [187] The axial tilt of Mars is 25.19° relative to its orbital plane, which is similar to the axial tilt of Earth. [2]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The quadrangles appear as rectangles on maps based on a cylindrical map projection, [1] but their actual shapes on the curved surface of Mars are more complicated Saccheri quadrilaterals. The sixteen equatorial quadrangles are the smallest, with surface areas of 4,500,000 square kilometres (1,700,000 sq mi) each, while the twelve mid-latitude ...
Olympus Mons (/ ə ˌ l ɪ m p ə s ˈ m ɒ n z, oʊ-/; [4] Latin for 'Mount Olympus') is a large shield volcano on Mars.It is over 21.9 km (13.6 mi; 72,000 ft) high as measured by the Mars Orbiter Laser Altimeter (MOLA), [5] about 2.5 times the elevation of Mount Everest above sea level.
The smallest of these, Kepler-42d, is about the size of Mars with a radius of only 0.57 times that of Earth. Not long ago, in Dec. of 2011, the Kepler team announced the discovery of Kepler-20e and Kepler-20f -- the first Earth-size planets ever found outside the solar system.
The Mars monolith is a rectangular object, possibly a boulder, discovered on the surface of Mars. [1] [2] The Mars Reconnaissance Orbiter took pictures of it from orbit, roughly 180 miles (300 km) away. [1] The HiRISE camera that was used to photograph the monolith has a resolution of approximately 1 foot or 30 centimeters per pixel. [3]
The crater's depth of 7,152 m (23,465 ft) [1] below the topographic datum of Mars explains the atmospheric pressure at the bottom: 12.4 mbar (1240 Pa or 0.18 psi) during winter, when the air is coldest and reaches its highest density.
Mars has a higher scale height of 11.1 km than Earth (8.5 km) because of its weaker gravity. [5] The theoretical dry adiabatic lapse rate of Mars is 4.3 °C km −1, [131] but the measured average lapse rate is about 2.5 °C km −1 because the suspended dust particles absorb solar radiation and heat the air. [2]