Search results
Results from the WOW.Com Content Network
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is 245,044,800; it has a digit sum of 27, which does not divide evenly into 245,044,800. 10 of the first 38 highly composite numbers are superior highly composite numbers.
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics. The tables below list all of the divisors of the numbers 1 to 1000.
The number twelve, a superior highly composite number, is the smallest number with four non-trivial factors (2, 3, 4, 6), and the smallest to include as factors all four numbers (1 to 4) within the subitizing range, and the smallest abundant number.
A number n that has more divisors than any x < n is a highly composite number (though the first two such numbers are 1 and 2). Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers , numbers that are the product of two consecutive integers.
12 (twelve) is the natural number following 11 and preceding 13.. Twelve is the 3rd superior highly composite number, [1] the 3rd colossally abundant number, [2] the 5th highly composite number, and is divisible by the numbers from 1 to 4, and 6, a large number of divisors comparatively.
Highly composite numbers: 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... A positive integer with more divisors than any smaller positive integer. A002182: Superior highly composite numbers: 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... A positive integer n for which there is an e > 0 such that d(n) / n e ≥ d(k) / k e for ...
Colossally abundant numbers were first studied by Ramanujan and his findings were intended to be included in his 1915 paper on highly composite numbers. [2] Unfortunately, the publisher of the journal to which Ramanujan submitted his work, the London Mathematical Society, was in financial difficulties at the time and Ramanujan agreed to remove aspects of the work to reduce the cost of printing ...