enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = ⁡ alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = ⁡ where k B is the Boltzmann ...

  3. Radiative flux - Wikipedia

    en.wikipedia.org/wiki/Radiative_flux

    Irradiance Flux density: E e [nb 2] watt per square metre W/m 2: M⋅T −3: Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity". Spectral irradiance Spectral flux density: E e,ν [nb 3] watt per square metre per hertz W⋅m −2 ⋅Hz −1: M⋅T −2: Irradiance of a surface per unit ...

  4. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Several sources [2] [12] [3] replace nσ λ with k λ r, where k λ is the absorption coefficient per unit density and r is the density of the gas. The absorption coefficient for spectral flux (a beam of radiation with a single wavelength, [W/m 2 /μm]) differs from the absorption coefficient for spectral intensity [W/sr/m 2 /μm] used in ...

  5. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.

  6. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    Irradiance Flux density: E e [nb 2] watt per square metre W/m 2: M⋅T −3: Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity". Spectral irradiance Spectral flux density: E e,ν [nb 3] watt per square metre per hertz W⋅m −2 ⋅Hz −1: M⋅T −2: Irradiance of a surface per unit ...

  7. Spectral radiance - Wikipedia

    en.wikipedia.org/wiki/Spectral_radiance

    The specific (radiative) intensity is a radiometric concept. Related to it is the intensity in terms of the photon distribution function, [5] [24] which uses the metaphor [25] of a particle of light that traces the path of a ray. The idea common to the photon and the radiometric concepts is that the energy travels along rays.

  8. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).

  9. Radiant flux - Wikipedia

    en.wikipedia.org/wiki/Radiant_flux

    A flow chart describing the relationship of various physical quantities, including radiant flux and exitance. In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency ...