Search results
Results from the WOW.Com Content Network
Rotordynamics (or rotor dynamics) is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage .
Analytical Campbell Diagram for a Simple Rotor. A Campbell diagram plot represents a system's response spectrum as a function of its oscillation regime. It is named for Wilfred Campbell, who introduced the concept. [1] [2] It is also called an interference diagram. [3]
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body.
Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected to dynamic (actions having high acceleration) loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading.
The proper orthogonal decomposition is a numerical method that enables a reduction in the complexity of computer intensive simulations such as computational fluid dynamics and structural analysis (like crash simulations). Typically in fluid dynamics and turbulences analysis, it is used to replace the Navier–Stokes equations by simpler models ...
Dunkerley's method [1] [2] is used in mechanical engineering to determine the critical speed of a shaft-rotor system. Other methods include the Rayleigh–Ritz method . Whirling of a shaft
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule.
A Poincaré plot, named after Henri Poincaré, is a graphical representation used to visualize the relationship between consecutive data points in time series to detect patterns and irregularities in the time series, revealing information about the stability of dynamical systems, providing insights into periodic orbits, chaotic motions, and bifurcations.