Search results
Results from the WOW.Com Content Network
In this chart of nuclides, isobars occur along diagonal lines running from the lower right to upper left.The line of beta stability includes the observationally stable nuclides shown in black; disconnected 'islands' are a consequence of the Mattauch isobar rule.
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to double beta decay or theoretically higher simultaneous beta decay, as they have the lowest energy of all ...
Thermodynamic diagrams usually show a net of five different lines: isobars = lines of constant pressure; isotherms = lines of constant temperature; dry adiabats = lines of constant potential temperature representing the temperature of a rising parcel of dry air
Isobar may refer to: Isobar (meteorology), a line connecting points of equal atmospheric pressure reduced to sea level on the maps. Isobaric process, a process taking place at constant pressure; Isobar (nuclide), one of multiple nuclides with the same mass but with different numbers of protons (or, equivalently, different numbers of neutrons).
An isobar (from Ancient Greek βάρος (baros) 'weight') is a line of equal or constant pressure on a graph, plot, or map; an isopleth or contour line of pressure. More accurately, isobars are lines drawn on a map joining places of equal average atmospheric pressure reduced to sea level for a specified period of time.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Chart of nuclides (isotopes) by binding energy, depicting the valley of stability. The diagonal line corresponds to equal numbers of neutrons and protons. Dark blue squares represent nuclides with the greatest binding energy, hence they correspond to the most stable nuclides. The binding energy is greatest along the floor of the valley of ...