enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis occurs when none of the roots are rational and when all three roots are distinct and real; the case of three distinct real roots occurs if and only if ⁠ q 2 / 4 ⁠ + ⁠ p 3 / 27 ⁠ < 0, in which case Cardano's formula involves first taking the square root of a negative number, which is imaginary, and then taking the ...

  3. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.

  4. Mathematical constant - Wikipedia

    en.wikipedia.org/wiki/Mathematical_constant

    The square root of 2, often known as root 2 or Pythagoras' constant, and written as √ 2, is the unique positive real number that, when multiplied by itself, gives the number 2. It is more precisely called the principal square root of 2 , to distinguish it from the negative number with the same property.

  5. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    It shows that the square root of 2 cannot be expressed as the ratio of two integers. The proof bifurcated "the numbers" into two non-overlapping collections—the rational numbers and the irrational numbers. There is a famous passage in Plato's Theaetetus in which it is stated that Theodorus (Plato's teacher) proved the irrationality of

  6. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...

  7. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    We are not taking the square root of any negative values here, since both and are necessarily positive. But we have lost the solution x = − 2. {\displaystyle x=-2.} The reason is that x {\displaystyle x} is actually not in general the positive square root of x 2 . {\displaystyle x^{2}.}

  8. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    This polynomial has no rational roots, since the rational root theorem shows that the only possibilities are ±1, but x 0 is greater than 1. So x 0 is an irrational algebraic number. There are countably many algebraic numbers, since there are countably many integer polynomials.

  9. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.