Search results
Results from the WOW.Com Content Network
Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. [1] It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies.
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .
Engineering statistics involves data concerning manufacturing processes such as: component dimensions, tolerances, type of material, and fabrication process control. There are many methods used in engineering analysis and they are often displayed as histograms to give a visual of the data as opposed to being just numerical.
Choosing a research question is an essential element of both quantitative and qualitative research. Investigation will require data collection and analysis, and the methodology for this will vary widely. Good research questions seek to improve knowledge on an important topic, and are usually narrow and specific. [1]
One of the most important requirements of experimental research designs is the necessity of eliminating the effects of spurious, intervening, and antecedent variables. In the most basic model, cause (X) leads to effect (Y). But there could be a third variable (Z) that influences (Y), and X might not be the true cause at all.
Some measure of the undisputed general importance of quantification in the natural sciences can be gleaned from the following comments: "these are mere facts, but they are quantitative facts and the basis of science." [1] It seems to be held as universally true that "the foundation of quantification is measurement." [2]
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession. [4] Data science is "a concept to unify statistics, data analysis, informatics, and their related methods" to "understand and analyze actual phenomena" with data. [5]