Search results
Results from the WOW.Com Content Network
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
The slope of the initial, linear portion of this curve gives Young's modulus. Mathematically, Young's modulus E is calculated using the formula E=σ/ϵ, where σ is the stress and ϵ is the strain. Shear modulus (G) Initial structure: Start with a relaxed structure of the material. All atoms should be in a state of minimum energy with no ...
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
In many materials, the relation between applied stress is directly proportional to the resulting strain (up to a certain limit), and a graph representing those two quantities is a straight line. The slope of this line is known as Young's modulus, or the "modulus of elasticity". The modulus of elasticity can be used to determine the stress ...
It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.
This stress is calculated by multiplying the change in temperature, material's thermal expansion coefficient and material's Young's modulus (see formula below). E {\displaystyle E} is Young's modulus , α {\displaystyle \alpha } is thermal expansion coefficient , T 0 {\displaystyle T_{0}} is initial temperature and T f {\displaystyle T_{f}} is ...
The stress-displacement, or vs x, relationship during fracture can be approximated by a sine curve, = (/), up to /4. The initial slope of the σ {\displaystyle \sigma } vs x curve can be related to Young's modulus through the following relationship:
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.