Search results
Results from the WOW.Com Content Network
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
Benford's law, which describes the frequency of the first digit of many naturally occurring data. The ideal and robust soliton distributions. Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
In physics, for example, the space-time continuum model describes space and time as part of the same continuum rather than as separate entities. A spectrum in physics, such as the electromagnetic spectrum, is often termed as either continuous (with energy at all wavelengths) or discrete (energy at only certain wavelengths).
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
It is also the continuous distribution with the maximum entropy for a specified mean and variance. [ 18 ] [ 19 ] Geary has shown, assuming that the mean and variance are finite, that the normal distribution is the only distribution where the mean and variance calculated from a set of independent draws are independent of each other.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
The continuous Bernoulli can be thought of as a continuous relaxation of the Bernoulli distribution, which is defined on the discrete set {,} by the probability mass function: = (), where is a scalar parameter between 0 and 1.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.