Search results
Results from the WOW.Com Content Network
Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function ; a function has a unique value for any input in its domain , and the algorithm is a process that ...
The learning rule bases its decision only on the outcome of the previous play. Outcomes are divided into successes (wins) and failures (losses). If the play on the previous round resulted in a success, then the agent plays the same strategy on the next round. Alternatively, if the play resulted in a failure the agent switches to another action.
In software engineering, the blackboard pattern is a behavioral design pattern [1] that provides a computational framework for the design and implementation of systems that integrate large and diverse specialized modules, and implement complex, non-deterministic control strategies.
CAA computes state values vertically and actions horizontally (the "crossbar"). Demonstration graphs showing delayed reinforcement learning contained states (desirable, undesirable, and neutral states), which were computed by the state evaluation function. This learning system was a forerunner of the Q-learning algorithm. [19]
The difference between learning automata and Q-learning is that the former technique omits the memory of Q-values, but updates the action probability directly to find the learning result. Learning automata is a learning scheme with a rigorous proof of convergence. [21] In learning automata theory, a stochastic automaton consists of:
Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...
However, if both players use this strategy, the game always ends in a draw. [18] If the human player is familiar with the optimal strategy, and MENACE can quickly learn it, then the games will eventually only end in draws. The likelihood of the computer winning increases quickly when the computer plays against a random-playing opponent. [3]
A step-wise schematic illustrating a generic Michigan-style learning classifier system learning cycle performing supervised learning. Keeping in mind that LCS is a paradigm for genetic-based machine learning rather than a specific method, the following outlines key elements of a generic, modern (i.e. post-XCS) LCS algorithm.