Search results
Results from the WOW.Com Content Network
The floor of x is also called the integral part, integer part, greatest integer, or entier of x, and was historically denoted [x] (among other notations). [2] However, the same term, integer part, is also used for truncation towards zero, which differs from the floor function for negative numbers. For n an integer, ⌊n⌋ = ⌈n⌉ = n.
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
Let β > 1 be the base and x a non-negative real number. Denote by ⌊x⌋ the floor function of x (that is, the greatest integer less than or equal to x) and let {x} = x − ⌊x⌋ be the fractional part of x. There exists an integer k such that β k ≤ x < β k+1. Set = ⌊ / ⌋ and
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer. The GCD of a and b is generally denoted gcd(a, b). [8]
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
According to Schur's theorem, since 6, 9, and 20 are (setwise) relatively prime, any sufficiently large integer can be expressed as a (non-negative, integer) linear combination of these three. Therefore, there exists a largest non–McNugget number, and all integers larger than it are McNugget numbers.
Canonical representation of a positive integer – Representation of a number as a product of primes; Countable set – Mathematical set that can be enumerated; Sequence – Function of the natural numbers in another set; Ordinal number – Generalization of "n-th" to infinite cases; Cardinal number – Size of a possibly infinite set
The number 2,147,483,647 (or hexadecimal 7FFFFFFF 16) is the maximum positive value for a 32-bit signed binary integer in computing. It is therefore the maximum value for variables declared as integers (e.g., as int) in many programming languages.