Search results
Results from the WOW.Com Content Network
Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of ...
Mathematical chemistry [1] is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. [2] Mathematical chemistry has also sometimes been called computer chemistry , but should not be confused with computational chemistry .
Chemical reaction network theory is an area of applied mathematics that attempts to model the behaviour of real-world chemical systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in biochemistry and theoretical chemistry.
Mathematical biology draws on discrete mathematics, topology (also useful for computational modeling), Bayesian statistics, linear algebra and Boolean algebra. [14] These mathematical approaches have enabled the creation of databases and other methods for storing, retrieving, and analyzing biological data, a field known as bioinformatics.
1.1 Mathematics. 1.2 Physics. 1.3 Chemistry. 1.4 Biology. 1.5 Economics. 2 Other equations. Toggle Other equations subsection. ... Defining equation (physical chemistry)
For example, some unicellular organisms have genomes much larger than that of humans. Cole's paradox: Even a tiny fecundity advantage of one additional offspring would favor the evolution of semelparity. Gray's paradox: Despite their relatively small muscle mass, dolphins can swim at high speeds and obtain large accelerations.
Modelling biological systems is a significant task of systems biology and mathematical biology. [a] Computational systems biology [b] [1] aims to develop and use efficient algorithms, data structures, visualization and communication tools with the goal of computer modelling of biological systems.
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...