enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interatomic potential - Wikipedia

    en.wikipedia.org/wiki/Interatomic_potential

    The true interatomic interactions are quantum mechanical in nature, and there is no known way in which the true interactions described by the Schrödinger equation or Dirac equation for all electrons and nuclei could be cast into an analytical functional form. Hence all analytical interatomic potentials are by necessity approximations.

  3. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    To extend the two atoms approach into solid, consider a simple model, say, a 1-D array of one element with interatomic distance of a, and the equilibrium distance is a 0. Its potential energy-interatomic distance relationship has similar form as the two atoms case, which reaches minimal at a 0, The Taylor expansion for this is:

  4. Force field (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Force_field_(chemistry)

    In the context of chemistry, molecular physics, physical chemistry, and molecular modelling, a force field is a computational model that is used to describe the forces between atoms (or collections of atoms) within molecules or between molecules as well as in crystals. Force fields are a variety of interatomic potentials.

  5. Buckingham potential - Wikipedia

    en.wikipedia.org/wiki/Buckingham_potential

    In theoretical chemistry, the Buckingham potential is a formula proposed by Richard Buckingham which describes the Pauli exclusion principle and van der Waals energy for the interaction of two atoms that are not directly bonded as a function of the interatomic distance.

  6. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  7. Morse potential - Wikipedia

    en.wikipedia.org/wiki/Morse_potential

    The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.

  8. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    These are all examples of a class of problems called stiff (mathematical stiffness) systems of differential equations, due to their application in analyzing the motion of spring and mass systems having large spring constants (physical stiffness). [5] For example, the initial value problem

  9. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.