Ads
related to: nucleic acid molecule structuremicrofluidics.creative-biolabs.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.
Nucleic acid thermodynamics – Study of how temperature affects the nucleic acid structure; Oligonucleotide synthesis – Chemical synthesis of relatively short fragments of nucleic acids with defined chemical structure; Quantification of nucleic acids – Process in molecular biology
At the time, "yeast nucleic acid" (RNA) was thought to occur only in plants, while "thymus nucleic acid" (DNA) only in animals. The latter was thought to be a tetramer, with the function of buffering cellular pH. [199] [200] In 1937, William Astbury produced the first X-ray diffraction patterns that showed that DNA had a regular structure. [201]
From the very early stages of structural studies of DNA by X-ray diffraction and biochemical means, molecular models such as the Watson-Crick nucleic acid double helix model were successfully employed to solve the 'puzzle' of DNA structure, and also find how the latter relates to its key functions in living cells.
"Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid" was the first article published to describe the discovery of the double helix structure of DNA, using X-ray diffraction and the mathematics of a helix transform.
Because nucleic acids are normally linear (unbranched) polymers, specifying the sequence is equivalent to defining the covalent structure of the entire molecule. For this reason, the nucleic acid sequence is also termed the primary structure. The sequence represents genetic information.
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids.
Nucleic acid tertiary structure is the three-dimensional shape of a nucleic acid polymer. [1] RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such functions require a precise three-dimensional structure.
Ads
related to: nucleic acid molecule structuremicrofluidics.creative-biolabs.com has been visited by 10K+ users in the past month