enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    For a typical second-order reaction with rate equation = [] [], if the concentration of reactant B is constant then = [] [] = ′ [], where the pseudofirst-order rate constant ′ = []. The second-order rate equation has been reduced to a pseudofirst-order rate equation, which makes the treatment to obtain an integrated rate equation much ...

  3. Pseudo first order reaction - Wikipedia

    en.wikipedia.org/?title=Pseudo_first_order...

    Language links are at the top of the page across from the title.

  4. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  5. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    [A] can provide intuitive insight about the order of each of the reagents. If plots of ⁠ v / [A] ⁠ vs. [B] overlay for multiple experiments with different-excess, the data are consistent with a first-order dependence on [A]. The same could be said for a plot of ⁠ v / [B] ⁠ vs. [A]; overlay is consistent with a first-order dependence on [B].

  6. Plateau principle - Wikipedia

    en.wikipedia.org/wiki/Plateau_Principle

    Although these equations were derived to assist with predicting the time course of drug action, [1] the same equation can be used for any substance or quantity that is being produced at a measurable rate and degraded with first-order kinetics. Because the equation applies in many instances of mass balance, it has very broad applicability in ...

  7. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    In first-order ordinary equations, the Runge-Kutta method uses a mathematical model that represents the relationship between the temperature and the rate of reaction. It is worth it to calculate the rate of reaction at different temperatures for different concentrations. The equation obtained is: / = / + / Stochastic methods → probabilities ...

  8. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length.

  9. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    The rate equation for the rate of formation of product P may be obtained by using the steady-state approximation, in which the concentration of intermediate A* is assumed constant because its rates of production and consumption are (almost) equal. [8] This assumption simplifies the calculation of the rate equation.