Search results
Results from the WOW.Com Content Network
10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles:
Using the fact that 2 10 = 1024 is only slightly more than 10 3 = 1000, 3n-digit decimal numbers can be efficiently packed into 10n binary bits. However, the IEEE formats have significands of 3 n +1 digits, which would generally require 10 n +4 binary bits to represent.
Binary to Hexadecimal or Decimal. A bit string, interpreted as a binary number, can be translated into a decimal number. For example, the lower case a, if represented by the bit string 01100001 (as it is in the standard ASCII code), can also be represented as the decimal number "97".
Given a decimal number, it can be split into two pieces of about the same size, each of which is converted to binary, whereupon the first converted piece is multiplied by 10 k and added to the second converted piece, where k is the number of decimal digits in the second, least-significant piece before conversion.
Technically, binary-coded decimal describes the encoding of decimal numbers where each decimal digit is represented by a fixed number of bits, usually four. With the introduction of the IBM card in 1928, IBM created a code [a] capable of representing alphanumeric information, [2] later adopted by other manufacturers.
In the decimal system, there are 10 digits, 0 through 9, which combine to form numbers. In an octal system, there are only 8 digits, 0 through 7. That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on.
A diagram showing how manipulating the least significant bits of a color can have a very subtle and generally unnoticeable effect on the color. In this diagram, green is represented by its RGB value, both in decimal and in binary. The red box surrounding the last two bits illustrates the least significant bits changed in the binary representation.
The Aiken code (also known as 2421 code) [1] [2] is a complementary binary-coded decimal (BCD) code. A group of four bits is assigned to the decimal digits from 0 to 9 according to the following table. The code was developed by Howard Hathaway Aiken and is still used today in digital clocks, pocket calculators and similar devices [citation needed].