Ad
related to: systems of inequalities questions
Search results
Results from the WOW.Com Content Network
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
However, the elimination process results in a new system that possibly contains more inequalities than the original. Yet, often some of the inequalities in the reduced system are redundant. Redundancy may be implied by other inequalities or by inequalities in information theory (a.k.a. Shannon type inequalities).
Systems of linear inequalities can be simplified by Fourier–Motzkin elimination. [ 17 ] The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them.
In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas . [ 1 ] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...
In general, a system with fewer equations than unknowns has infinitely many solutions, but it may have no solution. Such a system is known as an underdetermined system. In general, a system with the same number of equations and unknowns has a single unique solution. In general, a system with more equations than unknowns has no solution.
In convex optimization, a linear matrix inequality (LMI) is an expression of the form ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .
In mathematics, the solution set of a system of equations or inequality is the set of all its solutions, that is the values that satisfy all equations and inequalities. [1] Also, the solution set or the truth set of a statement or a predicate is the set of all values that satisfy it. If there is no solution, the solution set is the empty set. [2]
In real algebraic geometry, Krivine–Stengle Positivstellensatz (German for "positive-locus-theorem") characterizes polynomials that are positive on a semialgebraic set, which is defined by systems of inequalities of polynomials with real coefficients, or more generally, coefficients from any real closed field.
Ad
related to: systems of inequalities questions