Search results
Results from the WOW.Com Content Network
A text-to-video model is a machine learning model that uses a natural language description as input to produce a video relevant to the input text. [1] Advancements during the 2020s in the generation of high-quality, text-conditioned videos have largely been driven by the development of video diffusion models. [2]
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
The goal of diffusion models is to learn a diffusion process for a given dataset, such that the process can generate new elements that are distributed similarly as the original dataset. A diffusion model models data as generated by a diffusion process, whereby a new datum performs a random walk with drift through the space of all possible data. [2]
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
This paper describes the latent diffusion model (LDM). This is the backbone of the Stable Diffusion architecture. Classifier-Free Diffusion Guidance (2022). [29] This paper describes CFG, which allows the text encoding vector to steer the diffusion model towards creating the image described by the text.
This diffusion process is a linear and space-invariant transformation of the original image. Anisotropic diffusion is a generalization of this diffusion process: it produces a family of parameterized images, but each resulting image is a combination between the original image and a filter that depends on the local content of the original image.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In probability theory and statistics, diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems.