enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    A root of a polynomial is a zero of the corresponding polynomial function. [1] The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree , and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically ...

  3. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The degree of the zero polynomial is either left undefined, or is defined to be negative (usually −1 or ). [7] Like any constant value, the value 0 can be considered as a (constant) polynomial, called the zero polynomial. It has no nonzero terms, and so, strictly speaking, it has no degree either.

  4. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    For polynomials with more than one indeterminate, the combinations of values for the variables for which the polynomial function takes the value zero are generally called zeros instead of "roots". The study of the sets of zeros of polynomials is the object of algebraic geometry .

  5. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation + + + = with integer coefficients and ,.

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros.

  7. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Root-finding of polynomials – Algorithms for finding zeros of polynomials; Square-free polynomialPolynomial with no repeated root; Vieta's formulas – Relating coefficients and roots of a polynomial; Cohn's theorem relating the roots of a self-inversive polynomial with the roots of the reciprocal polynomial of its derivative.

  8. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  9. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function f (n) (a) denotes the n th derivative of f evaluated at the point a. The derivative of order zero of f is defined to be f itself and (x − a) 0 and 0! are both defined to be 1. This series can be written by using sigma notation, as in the right side formula. [1]