Search results
Results from the WOW.Com Content Network
The result is the production of four haploid cells (n chromosomes; 23 in humans) from the two haploid cells (with n chromosomes, each consisting of two sister chromatids) [clarification needed] produced in meiosis I. The four main steps of meiosis II are: prophase II, metaphase II, anaphase II, and telophase II.
Prophase II of meiosis is very similar to prophase of mitosis. The most noticeable difference is that prophase II occurs with a haploid number of chromosomes as opposed to the diploid number in mitotic prophase. [12] [10] In both animal and plant cells chromosomes may de-condense during telophase I requiring them to re-condense in prophase II.
Improper chromosome segregation (see non-disjunction, disomy) can result in aneuploid gametes having either too few or too many chromosomes. The second stage at which segregation occurs during meiosis is prophase II (see meiosis diagram). During this stage, segregation occurs by a process similar to that during mitosis, except that in this case ...
Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of ...
Crossing over is important for the normal segregation of chromosomes during meiosis. [2] Crossing over also accounts for genetic variation, because due to the swapping of genetic material during crossing over, the chromatids held together by the centromere are no longer identical. So, when the chromosomes go on to meiosis II and separate, some ...
The two chromosomes which pair are referred to as non-sister chromosomes, since they did not arise simply from the replication of a parental chromosome. Recombination between non-sister chromosomes at meiosis is known to be a recombinational repair process that can repair double-strand breaks and other types of double-strand damage. [2]
A meiocyte is a type of cell that differentiates into a gamete through the process of meiosis. Through meiosis, the diploid meiocyte divides into four genetically different haploid gametes. [1] [2] The control of the meiocyte through the meiotic cell cycle varies between different groups of organisms.
We denote the chromosomes carrying translocated material with a T and the chromosomes with a normal order of genes with an N. Chromosomes N1 and T1 have homologous centromeres found in wild type on chromosome 1; N2 and T2 have centromeres found in wild type on chromosome 2. During anaphase of meiosis I, the mechanisms that attach the spindle to ...