Search results
Results from the WOW.Com Content Network
The zeta potential is an important and readily measurable indicator of the stability of colloidal dispersions. The magnitude of the zeta potential indicates the degree of electrostatic repulsion between adjacent, similarly charged particles in a dispersion. For molecules and particles that are small enough, a high zeta potential will confer ...
The erythrocyte sedimentation rate (ESR or sed rate) is the rate at which red blood cells in anticoagulated whole blood descend in a standardized tube over a period of one hour. It is a common hematology test, and is a non-specific measure of inflammation .
The zeta potential is an electrochemical property of cell surfaces that is determined by the net electrical charge of molecules exposed at the surface of cell membranes of the cell. The normal zeta potential of the red blood cell is −15.7 millivolts (mV). [35]
Smoluchowski's sedimentation potential is defined where ε 0 is the permitivity of free space, D the dimensionless dielectric constant, ξ the zeta potential, g the acceleration due to gravity, Φ the particle volume fraction, ρ the particle density, ρ o the medium density, λ the specific volume conductivity, and η the viscosity.
Zeta potential titration is a titration of heterogeneous systems, for example colloids and emulsions. Solids in such systems have very high surface area. This type of titration is used to study the zeta potential of these surfaces under different conditions. Details of zeta potential definition and measuring techniques can be found in the ...
Low ionic strength saline (LISS) is a potentiator that acts by not only reducing the zeta potential, but also by increasing the amount of antibody taken up by the red blood cell during sensitization. LISS is a solution of glycine and albumin. Polyethylene glycol (PEG) in a LISS solution removes water from the system and thus concentrates the ...
where U is the velocity vector, ρ is the density of the fluid, / is the material derivative, μ is the viscosity of the fluid, ρ e is the electric charge density, ϕ is the applied electric field, ψ is the electric field due to the zeta potential at the walls and p is the fluid pressure.
The potential of zero charge is used for determination of the absolute electrode potential in a given electrolyte. IUPAC also defines the potential difference with respect to the potential of zero charge as: E pzc = E − E σ=0. where: E pzc is the electrode potential difference with respect to the point of zero charge, E σ=0