Search results
Results from the WOW.Com Content Network
The mechanism for the reduction of a nitrile to an aldehyde with DIBAL-H. The hydride reagent Diisobutylaluminium hydride, or DIBAL-H, is commonly used to convert nitriles to the aldehyde. [14] Regarding the proposed mechanism, DIBAL forms a Lewis acid-base adduct with the nitrile by formation of an N-Al bond. The hydride is then transferred to ...
The determining factor is typically how electron-rich or poor the nitrile is. For example: an electron-poor nitrile is a good electrophile (readily susceptible to attack from alkoxides etc.) but a poor nucleophile would typically be easier to protonate than to participate in the reaction and hence would be expected to react more readily under ...
The Barton reaction involves a homolytic RO–NO cleavage, followed by δ-hydrogen abstraction, free radical recombination, and tautomerization to form an oxime. [3] Selectivity for the δ-hydrogen is a result of the conformation of the 6-membered radical intermediate. Often, the site of hydrogen atom abstraction can be easily predicted.
This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R-CN) using tin(II) chloride (SnCl 2), hydrochloric acid (HCl) and quenching the resulting iminium salt ([R-CH=NH 2] + Cl −) with water (H 2 O). [1] [2] During the synthesis, ammonium chloride is also produced. It is a type of nucleophilic addition reaction. Stephen ...
DIBAL efficiently reduces α-β unsaturated esters to the corresponding allylic alcohol. [1] By contrast, LiAlH 4 reduces esters and acyl chlorides to primary alcohols, and nitriles to primary amines [using Fieser work-up procedure]. Similarly, DIBAL reduces lactones to hemiacetals (the equivalent of an aldehyde). [4]
With nitrile electrophiles, nucleophilic addition take place by: [1] hydrolysis of a nitrile to form an amide or a carboxylic acid; organozinc nucleophiles in the Blaise reaction; alcohols in the Pinner reaction. the (same) nitrile α-carbon in the Thorpe reaction. The intramolecular version is called the Thorpe–Ziegler reaction.
Reductions with hydrosilanes are methods used for hydrogenation and hydrogenolysis of organic compounds.The approach is a subset of ionic hydrogenation.In this particular method, the substrate is treated with a hydrosilane and auxiliary reagent, often a strong acid, resulting in formal transfer of hydride from silicon to carbon. [1]
The alcohol (1) is first converted into a reactive carbonothioyl intermediate such as a thionoester or xanthate 2. Heating of AIBN results in its homolytic cleavage, generating two 2-cyanoprop-2-yl radicals 9 , which each abstract a hydrogen from tributylstannane 3 to generate tributylstannyl radicals 4 and inactive 10 .