Search results
Results from the WOW.Com Content Network
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The probability density, cumulative distribution, and inverse cumulative distribution of any function of one or more independent or correlated normal variables can be computed with the numerical method of ray-tracing [41] (Matlab code). In the following sections we look at some special cases.
Computable Document Format (CDF) is an electronic document format [1] designed to allow authoring dynamically generated, interactive content. [2] CDF was created by Wolfram Research , and CDF files can be created using Mathematica . [ 3 ]
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ().
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
A non-exhaustive list of software implementations of Empirical Distribution function includes: In R software, we compute an empirical cumulative distribution function, with several methods for plotting, printing and computing with such an “ecdf” object. In MATLAB we can use Empirical cumulative distribution function (cdf) plot
The quantile function, Q, of a probability distribution is the inverse of its cumulative distribution function F. The derivative of the quantile function, namely the quantile density function, is yet another way of prescribing a probability distribution. It is the reciprocal of the pdf composed with the quantile function.