Ad
related to: linearization equation
Search results
Results from the WOW.Com Content Network
Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function = at any = based on the value and slope of the function at =, given that () is differentiable on [,] (or [,]) and that is close to .
In numerical analysis, the local linearization (LL) method is a general strategy for designing numerical integrators for differential equations based on a local (piecewise) linearization of the given equation on consecutive time intervals. The numerical integrators are then iteratively defined as the solution of the resulting piecewise linear ...
In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.
The theorem states that the behaviour of a dynamical system in a domain near a hyperbolic equilibrium point is qualitatively the same as the behaviour of its linearization near this equilibrium point, where hyperbolicity means that no eigenvalue of the linearization has real part equal to zero. Therefore, when dealing with such dynamical ...
In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it. As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated by linear equations (linearization).
In mathematics, quasilinearization is a technique which replaces a nonlinear differential equation or operator equation (or system of such equations) with a sequence of linear problems, which are presumed to be easier, and whose solutions approximate the solution of the original nonlinear problem with increasing accuracy.
Feedback linearization is a common strategy employed in nonlinear control to control nonlinear systems. Feedback linearization techniques may be applied to nonlinear control systems of the form Feedback linearization techniques may be applied to nonlinear control systems of the form
The linearization technique was introduced by Marion King Hubbert in his 1982 review paper. [1] The Hubbert curve [ 2 ] is the first derivative of a logistic function, which has been used for modeling the depletion of crude oil in particular, the depletion of finite mineral resources in general [ 3 ] and also population growth patterns.
Ad
related to: linearization equation