Search results
Results from the WOW.Com Content Network
The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
The following other wikis use this file: Usage on cs.wikipedia.org Kvaternionová grupa; Usage on de.wikipedia.org Zykel-Graph; Usage on es.wikipedia.org
The seven major dog groups in the U.S. are Herding, Hound, Non-Sporting, Sporting, Terrier, Toy and Working. Initially, when the AKC got its start in 1884, it tossed all dog breeds into either the ...
The quaternions are "essentially" the only (non-trivial) central simple algebra (CSA) over the real numbers, in the sense that every CSA over the real numbers is Brauer equivalent to either the real numbers or the quaternions. Explicitly, the Brauer group of the real numbers consists of two classes, represented by the real numbers and the ...
Cycle graph of the quaternion group Q 8. Cycles that contain a non-prime number of elements have cyclic subgroups that are not shown in the graph. For the group Dih 4 above, we could draw a line between a 2 and e since (a 2) 2 = e, but since a 2 is part of a larger cycle, this is not an edge of the cycle graph.
The character table does not in general determine the group up to isomorphism: for example, the quaternion group Q and the dihedral group of 8 elements, D 4, have the same character table. Brauer asked whether the character table, together with the knowledge of how the powers of elements of its conjugacy classes are distributed, determines a ...
The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q 8. Dedekind and Baer have shown (in the finite and respectively infinite order case) that every Hamiltonian group is a direct product of the form G = Q 8 × B × D , where B is an elementary abelian 2-group , and D is a torsion ...