Search results
Results from the WOW.Com Content Network
The defining property of the Carlyle circle can be established thus: the equation of the circle having the line segment AB as diameter is x(x − s) + (y − 1)(y − p) = 0. The abscissas of the points where the circle intersects the x-axis are the roots of the equation (obtained by setting y = 0 in the equation of the circle)
In terms of the polynomial F given above, the curve F(x, y) = 0 is p-circular if F n−i is divisible by (x 2 + y 2) p−i when i < p. When p = 1 this reduces to the definition of a circular curve. The set of p-circular curves is invariant under Euclidean transformations. Note that a p-circular curve must have degree at least 2p.
The equation of the circle determined by three points (,), (,), (,) not on a line is obtained by a conversion of the 3-point form of a circle equation: () + () () () = () + () () (). Homogeneous form In homogeneous coordinates , each conic section with the equation of a circle has the form x 2 + y 2 − 2 a x z − 2 b y z + c z 2 = 0 ...
Thus, by the Pythagorean theorem, x and y satisfy the equation + = Since x 2 = (−x) 2 for all x, and since the reflection of any point on the unit circle about the x - or y-axis is also on the unit circle, the above equation holds for all points (x, y) on the unit circle, not only those in the first quadrant.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that
Alternative equations: 1) In the defining equation of a coaxal system of circles there can be used multiples of the power functions, too. 2) The equation of one of the circles can be replaced by the equation of the desired radical axis. The radical axis can be seen as a circle with an infinitely large radius.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
A circle is the set of points in a plane that lie at radius from a center point . (,) = {:}In the complex plane, is a complex number and is a set of complex numbers. Using the property that a complex number multiplied by its conjugate is the square of its modulus (its Euclidean distance from the origin), an implicit equation for is: