Search results
Results from the WOW.Com Content Network
Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, [2] to represent the composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra , and as such has numerous applications in many areas of mathematics, as well as in applied ...
[2] The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a copyleft version of Macsyma is called Maxima. Reduce became free software in 2008. [3] Commercial systems include Mathematica [4] and Maple, which are commonly used by research mathematicians, scientists, and engineers.
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
In general, if a vector [a 1, a 2, a 3] is represented as the quaternion a 1 i + a 2 j + a 3 k, the cross product of two vectors can be obtained by taking their product as quaternions and deleting the real part of the result. The real part will be the negative of the dot product of the two vectors.
The permutations of the Rubik's Cube form a group, a fundamental concept within abstract algebra.. In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. [1]
where v 1, v 2, ..., v k are in S, and a 1, a 2, ..., a k are in F form a linear subspace called the span of S. The span of S is also the intersection of all linear subspaces containing S. In other words, it is the smallest (for the inclusion relation) linear subspace containing S. A set of vectors is linearly independent if none is in the span ...
In mathematics and mathematical logic, Boolean algebra is a branch of algebra.It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers.
Every polynomial in one variable x with real coefficients can be uniquely written as the product of a constant, polynomials of the form x + a with a real, and polynomials of the form x 2 + ax + b with a and b real and a 2 − 4b < 0 (which is the same thing as saying that the polynomial x 2 + ax + b has no real roots).