Search results
Results from the WOW.Com Content Network
In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
Fibonacci used a composite fraction notation in which a sequence of numerators and denominators shared the same fraction bar; each such term represented an additional fraction of the given numerator divided by the product of all the denominators below and to the right of it.
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
For any integer n, the sequence of Fibonacci numbers F i taken modulo n is periodic. The Pisano period, denoted π ( n ), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins:
In 1202, Leonardo Fibonacci introduced the Fibonacci sequence to the western world with his book Liber Abaci. [5] Fibonacci presented a thought experiment on the growth of an idealized rabbit population. [6] Johannes Kepler (1571–1630) pointed out the presence of the Fibonacci sequence in nature, using it to explain the pentagonal form of ...
The book also brought to Europe what is now known as the Fibonacci sequence (known to Indian mathematicians for hundreds of years before that) [170] which Fibonacci used as an unremarkable example. The 14th century saw the development of new mathematical concepts to investigate a wide range of problems. [ 171 ]
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.