Search results
Results from the WOW.Com Content Network
The XOR cipher is often used in computer malware to make reverse engineering more difficult. If the key is random and is at least as long as the message, the XOR cipher is much more secure than when there is key repetition within a message. [4] When the keystream is generated by a pseudo-random number generator, the result is a stream cipher.
The xor–encrypt–xor (XEX) is a (tweakable) mode of operation of a block cipher. In tweaked-codebook mode with ciphertext stealing , it is one of the more popular modes of operation for whole-disk encryption. XEX is also a common form of key whitening, and part of some smart card proposals. [1] [2]
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
Mix (with, for example, xor) hardware generated random numbers with the output of a good quality stream cipher, as close to the point of use as possible. The stream cipher key or seed should be changeable in a way that can be audited and derived from a trustworthy source, e.g. dice throws.
In cryptography, a keystream is a stream of random or pseudorandom characters that are combined with a plaintext message to produce an encrypted message (the ciphertext).. The "characters" in the keystream can be bits, bytes, numbers or actual characters like A-Z depending on the usage case.
In cryptography, rotational cryptanalysis is a generic cryptanalytic attack against algorithms that rely on three operations: modular addition, rotation and XOR — ARX for short. Algorithms relying on these operations are popular because they are relatively cheap in both hardware and software and run in constant time, making them safe from ...
The stream cipher produces a string of bits C(K) the same length as the messages. The encrypted versions of the messages then are: E(A) = A xor C E(B) = B xor C. where xor is performed bit by bit. Say an adversary has intercepted E(A) and E(B). They can easily compute: E(A) xor E(B)
Free XOR optimization implies an important point that the amount of data transfer (communication) and number of encryption and decryption (computation) of the garbled circuit protocol relies only on the number of AND gates in the Boolean circuit not the XOR gates. Thus, between two Boolean circuits representing the same function, the one with ...