Search results
Results from the WOW.Com Content Network
The operator is said to be positive-definite, and written >, if , >, for all {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.
Hermitian form, a specific sesquilinear form; Hermitian function, a complex function whose complex conjugate is equal to the original function with the variable changed in sign; Hermitian manifold/structure Hermitian metric, is a smoothly varying positive-definite Hermitian form on each fiber of a complex vector bundle
A further property of a Hermitian operator is that eigenfunctions corresponding to different eigenvalues are orthogonal. [1] In matrix form, operators allow real eigenvalues to be found, corresponding to measurements. Orthogonality allows a suitable basis set of vectors to represent the state of the quantum system.
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.
Let A and B be two Hermitian matrices of order n. We say that A ≥ B if A − B is positive semi-definite. Similarly, we say that A > B if A − B is positive definite. Although it is commonly discussed on matrices (as a finite-dimensional case), the Loewner order is also well-defined on operators (an infinite-dimensional case) in the ...
A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p) -form η {\displaystyle \eta } on an n -dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p) -forms ζ with compact support, we have ∫ M η ∧ ζ ≥ 0 ...
In finite dimensions where operators can be represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H {\displaystyle H} .