Search results
Results from the WOW.Com Content Network
In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
Scheduler : There is a scheduling between join patterns (e.g. a round-robin scheduler, first-match scheduler). [6] Design patterns : The join-pattern is first of all a behavioral and a concurrency pattern. Concurrent programming : It's execute in a concurrent way. Pattern matching : The join-pattern works with matching tasks.
A regex pattern matches a target string. The pattern is composed of a sequence of atoms. An atom is a single point within the regex pattern which it tries to match to the target string. The simplest atom is a literal, but grouping parts of the pattern to match an atom will require using ( ) as metacharacters.
Thus, it is useful for pattern-matching, semantic extraction, and many other operations over syntactic trees such as those produced by natural language parsers. JAPE is a version of CPSL – Common Pattern Specification Language. A JAPE grammar consists of a set of phases, each of which consists of a set of pattern/action rules.
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
The Rete algorithm (/ ˈ r iː t iː / REE-tee, / ˈ r eɪ t iː / RAY-tee, rarely / ˈ r iː t / REET, / r ɛ ˈ t eɪ / reh-TAY) is a pattern matching algorithm for implementing rule-based systems. The algorithm was developed to efficiently apply many rules or patterns to many objects, or facts, in a knowledge base. It is used to determine ...
Generalizations of the same idea can be used to find more than one match of a single pattern, or to find matches for more than one pattern. To find a single match of a single pattern, the expected time of the algorithm is linear in the combined length of the pattern and text, although its worst-case time complexity is the product of the two ...