Search results
Results from the WOW.Com Content Network
Titanium is considered the most biocompatible metal due to its resistance to corrosion from bodily fluids, bio-inertness, capacity for osseointegration, and high fatigue limit. Titanium's ability to withstand the harsh bodily environment is a result of the protective oxide film that forms naturally in the presence of oxygen.
Titanium dioxide, also known as titanium(IV) oxide or titania / t aɪ ˈ t eɪ n i ə /, is the inorganic compound derived from titanium with the chemical formula TiO 2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. [4] It is a white solid that is insoluble in water, although mineral forms can appear ...
Nitinol biocompatibility is an important factor in biomedical applications.Nitinol (NiTi), which is formed by alloying nickel and titanium (~ 50% Ni), is a shape-memory alloy with superelastic properties more similar to that of bone, [clarification needed] when compared to stainless steel, another commonly used biomaterial.
A common reduced titanium oxide is TiO, also known as titanium monoxide. It can be prepared from titanium dioxide and titanium metal at 1500 °C. [4] Ti 3 O 5, Ti 4 O 7, and Ti 5 O 9 are non-stoichiometric oxides. These compounds are typically formed at high temperatures in the presence of excess oxygen.
It is a white solid that forms by treatment of titanium dioxide with sulfuric acid, either directly or indirectly. It hydrolyzes to a gel of hydrated titanium dioxide. Characteristic of most titanium(IV) compounds with oxygen-containing ligands, the species also includes oxo ligands. [1]
Titanium forms a variety of sulfides, but only TiS 2 has attracted significant interest. It adopts a layered structure and was used as a cathode in the development of lithium batteries. Because Ti(IV) is a "hard cation", the sulfides of titanium are unstable and tend to hydrolyze to the oxide with release of hydrogen sulfide. [12]
Titanium(II) oxide (Ti O) is an inorganic chemical compound of titanium and oxygen. It can be prepared from titanium dioxide and titanium metal at 1500 °C. [ 1 ] It is non-stoichiometric in a range TiO 0.7 to TiO 1.3 and this is caused by vacancies of either Ti or O in the defect rock salt structure. [ 1 ]
Titanium and its alloys are used in airplanes, missiles, and rockets where strength, low weight, and resistance to high temperatures are important. [14] [15] [16] Since titanium does not react within the human body, it and its alloys are used in artificial joints, screws, and plates for fractures, and for other biological implants.