Search results
Results from the WOW.Com Content Network
An N-point DFT is expressed as the multiplication =, where is the original input signal, is the N-by-N square DFT matrix, and is the DFT of the signal. The transformation matrix W {\displaystyle W} can be defined as W = ( ω j k N ) j , k = 0 , … , N − 1 {\displaystyle W=\left({\frac {\omega ^{jk}}{\sqrt {N}}}\right)_{j,k=0,\ldots ,N-1 ...
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...
Over the complex numbers, it is often customary to normalize the formulas for the DFT and inverse DFT by using the scalar factor in both formulas, rather than in the formula for the DFT and in the formula for the inverse DFT. With this normalization, the DFT matrix is then unitary.
There is a direct relationship between the Fourier transform on finite groups and the representation theory of finite groups.The set of complex-valued functions on a finite group, , together with the operations of pointwise addition and convolution, form a ring that is naturally identified with the group ring of over the complex numbers, [].
The development of fast algorithms for DFT can be traced to Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno.Gauss wanted to interpolate the orbits from sample observations; [6] [7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT ...
The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).
The DTFT itself is a continuous function of frequency, but discrete samples of it can be readily calculated via the discrete Fourier transform (DFT) (see § Sampling the DTFT), which is by far the most common method of modern Fourier analysis. Both transforms are invertible.
In mathematics the finite Fourier transform may refer to either . another name for discrete-time Fourier transform (DTFT) of a finite-length series. E.g., F.J.Harris (pp. 52–53) describes the finite Fourier transform as a "continuous periodic function" and the discrete Fourier transform (DFT) as "a set of samples of the finite Fourier transform".