Search results
Results from the WOW.Com Content Network
To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and decide whether each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).
Datafly algorithm is an algorithm for providing anonymity in medical data. The algorithm was developed by Latanya Arvette Sweeney in 1997−98. [1] [2] Anonymization is achieved by automatically generalizing, substituting, inserting, and removing information as appropriate without losing many of the details found within the data.
Latanya Arvette Sweeney is an American computer scientist. She is the Daniel Paul Professor of the Practice of Government and Technology at the Harvard Kennedy School and in the Harvard Faculty of Arts and Sciences at Harvard University. [1]
According to the EDPS and AEPD, no one, including the data controller, should be able to re-identify data subjects in a properly anonymized dataset. [8] Research by data scientists at Imperial College in London and UCLouvain in Belgium, [ 9 ] as well as a ruling by Judge Michal Agmon-Gonen of the Tel Aviv District Court, [ 10 ] highlight the ...
Spatial cloaking is a privacy mechanism that is used to satisfy specific privacy requirements by blurring users’ exact locations into cloaked regions. [1] [2] This technique is usually integrated into applications in various environments to minimize the disclosure of private information when users request location-based service.
The Protection of Human Subjects ('Common Rule'), a collection of multiple U.S. federal agencies and departments including the U.S. Department of Health and Human Services, warn that re-identification is becoming gradually easier because of "big data"—the abundance and constant collection and analysis of information along with the evolution ...
The l-diversity model handles some of the weaknesses in the k-anonymity model where protected identities to the level of k-individuals is not equivalent to protecting the corresponding sensitive values that were generalized or suppressed, especially when the sensitive values within a group exhibit homogeneity.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]