Search results
Results from the WOW.Com Content Network
Global illumination [1] (GI), or indirect illumination, is a group of algorithms used in 3D computer graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take into account not only the light that comes directly from a light source (direct illumination), but also subsequent cases in which light rays from the same source are reflected by other surfaces in the ...
In volumetric lighting, the light cone emitted by a light source is modeled as a transparent object and considered as a container of a "volume". As a result, light has the capability to give the effect of passing through an actual three-dimensional aerosol (e.g. fog, dust, smoke, or steam) that is inside its volume, just like in the real world.
Scene rendered with RRV [1] (simple implementation of radiosity renderer based on OpenGL) 79th iteration The Cornell box, rendered with and without radiosity by BMRT. In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely.
Even though this is a rough, opaque surface, more than just diffuse light is reflected from the brighter side of the material, creating small highlights, because "everything is shiny" in the physically-based rendering model of the real world. Tessellation is used to generate an object mesh from a heightmap and normal map, creating greater detail.
Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity .
In 2014, a demo of the PlayStation 4 video game The Tomorrow Children, developed by Q-Games and Japan Studio, demonstrated new lighting techniques developed by Q-Games, notably cascaded voxel cone ray tracing, which simulates lighting in real-time and uses more realistic reflections rather than screen space reflections.
Image-based lighting (IBL) is a 3D rendering technique which involves capturing an omnidirectional representation of real-world light information as an image, typically using a 360° camera. This image is then projected onto a dome or sphere analogously to environment mapping , and this is used to simulate the lighting for the objects in the scene.
The Phong reflection model was developed by Bui Tuong Phong at the University of Utah, who published it in his 1975 Ph.D. dissertation. [1] [2] It was published in conjunction with a method for interpolating the calculation for each individual pixel that is rasterized from a polygonal surface model; the interpolation technique is known as Phong shading, even when it is used with a reflection ...