Search results
Results from the WOW.Com Content Network
Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one. [1]
Multivariate (sometimes multivariable) calculus is the field of mathematics in which the results of differential and integral calculus are extended to contexts requiring the use of functions of several variables.
This is a list of multivariable calculus topics. See also multivariable calculus, vector calculus, list of real analysis topics, list of calculus topics. Closed and exact differential forms; Contact (mathematics) Contour integral; Contour line; Critical point (mathematics) Curl (mathematics) Current (mathematics) Curvature; Curvilinear ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces.It can be thought of as the double integral analogue of the line integral.
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.