enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    [c] Essentially, backpropagation evaluates the expression for the derivative of the cost function as a product of derivatives between each layer from right to left – "backwards" – with the gradient of the weights between each layer being a simple modification of the partial products (the "backwards propagated error").

  3. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required [3] [4]. Auto-differentiation is thus neither ...

  4. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  5. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.

  6. Seppo Linnainmaa - Wikipedia

    en.wikipedia.org/wiki/Seppo_Linnainmaa

    2 Backpropagation. 3 Notes. 4 External ... derivative of a differentiable composite function that can be represented as a graph, by recursively applying the chain ...

  7. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Then, the backpropagation algorithm is used to find the gradient of the loss function with respect to all the network parameters. Consider an example of a neural network that contains a recurrent layer and a feedforward layer . There are different ways to define the training cost, but the aggregated cost is always the average of the costs of ...

  8. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight. [1]

  9. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.