enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Here is a proof by contradiction that log 2 3 is irrational (log 2 3 ≈ 1.58 > 0). ... To show this, suppose we divide integers n by m (where m is nonzero).

  3. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    Because of this, no proof could be found to show that the zeta constants with odd arguments were irrational, even though they were (and still are) all believed to be transcendental. However, in June 1978, Roger Apéry gave a talk titled "Sur l'irrationalité de ζ(3)."

  4. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    Written in 1873, this proof uses the characterization of as the smallest positive number whose half is a zero of the cosine function and it actually proves that is irrational. [3] [4] As in many proofs of irrationality, it is a proof by contradiction.

  5. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers. [3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0.

  6. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  7. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    It took about 35 years to show their existence. Wolfgang M. Schmidt in 1968 showed that examples exist. However, almost all complex numbers are S numbers. [27] Mahler proved that the exponential function sends all non-zero algebraic numbers to S numbers: [28] [29] this shows that e is an S number and gives a proof of the transcendence of π.

  8. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number. This proof uses that 2 {\displaystyle {\sqrt {2}}} is irrational (an easy proof is known since Euclid ), but not that 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is irrational (this is true, but the proof ...

  9. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e. In 1891, Hurwitz explained how it is possible to prove along the same line of ideas that e is not a root of a third-degree polynomial with rational coefficients, which implies that e 3 is irrational. [12]