Search results
Results from the WOW.Com Content Network
To estimate the number of periods required to double an original investment, divide the most convenient "rule-quantity" by the expected growth rate, expressed as a percentage. For instance, if you were to invest $100 with compounding interest at a rate of 9% per annum, the rule of 72 gives 72/9 = 8 years required for the investment to be worth ...
Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g ...
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
Mathematically, the value of the investment is assumed to undergo exponential growth or decay according to some rate of return (any value greater than −100%), with discontinuities for cash flows, and the IRR of a series of cash flows is defined as any rate of return that results in a NPV of zero (or equivalently, a rate of return that results ...
In addition to the logarithmic scales, some slide rules have other mathematical functions encoded on other auxiliary scales. The most popular are trigonometric, usually sine and tangent, common logarithm (log 10) (for taking the log of a value on a multiplier scale), natural logarithm (ln) and exponential (e x) scales.
To calculate ROI, you need to know the price that was paid for the investment and the price the investment will be sold for. To determine the net return on the investment, you subtract the ...
This means that an investment of $100 that yields an arithmetic return of 50% followed by an arithmetic return of −50% will result in $75, while an investment of $100 that yields a logarithmic return of 50% followed by a logarithmic return of −50% will come back to $100. Logarithmic return is also called the continuously compounded return.
RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is