Search results
Results from the WOW.Com Content Network
Common current ultrashort pulse laser technologies include Ti-sapphire lasers and dye lasers. High output peak power usually requires chirped pulse amplification of a seed pulse from a modelocked laser. Dealing with high optical powers also needs the nonlinear optical phenomena to be taken in account. [citation needed]
Ultrafast laser spectroscopy is a category of spectroscopic techniques using ultrashort pulse lasers for the study of dynamics on extremely short time scales (attoseconds to nanoseconds). Different methods are used to examine the dynamics of charge carriers, atoms, and molecules.
Such structures are potentially useful for empowering next-generation applications in telecommunications and bioengineering that rely on the creation of increasingly sophisticated miniature parts. The precision, fabrication speed and versatility of ultrafast laser processing make it well placed to become a vital industrial tool for manufacturing.
Part of a Ti:sapphire oscillator. The Ti:sapphire crystal is the bright red light source on the left. The green light is from the pump diode. Titanium-sapphire lasers (also known as Ti:sapphire lasers, Ti:Al 2 O 3 lasers or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers.
The ultrafast laser pulse must have a wavelength that is short enough to excite electrons across the bandgap of the semiconductor substrate. This scheme is suitable for illumination with a Ti:sapphire oscillator laser with photon energies of 1.55 eV and pulse energies of about 10 nJ
Nanowire lasers for ultrafast transmission of information in light pulses. Semiconductor nanowire lasers are nano-scaled lasers that can be embedded on chips and constitute an advance for computing and information processing applications. Nanowire lasers are coherent light sources (single mode optical waveguides) as any other laser device, with ...
Frequency-resolved optical gating (FROG) is a general method for measuring the spectral phase of ultrashort laser pulses, which range from subfemtosecond to about a nanosecond in length. Invented in 1991 by Rick Trebino and Daniel J. Kane, FROG was the first technique to solve this problem, which is difficult because, ordinarily, to measure an ...
Fig. 1: Schematic diagram of a pulse shaper. Generation of sequences of ultrashort optical pulses is key in realizing ultra high speed optical networks, Optical Code Division Multiple Access (OCDMA) systems, chemical and biological reaction triggering and monitoring etc. Based on the requirement, pulse shapers may be designed to stretch, compress or produce a train of pulses from a single ...