Search results
Results from the WOW.Com Content Network
A Lewis base is also a Brønsted–Lowry base, but a Lewis acid does not need to be a Brønsted–Lowry acid. The classification into hard and soft acids and bases ( HSAB theory ) followed in 1963. The strength of Lewis acid-base interactions, as measured by the standard enthalpy of formation of an adduct can be predicted by the Drago–Wayland ...
HSAB is an acronym for "hard and soft (Lewis) acids and bases".HSAB is widely used in chemistry for explaining the stability of compounds, reaction mechanisms and pathways. It assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical species.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
In the same year that Brønsted and Lowry published their theory, G. N. Lewis created an alternative theory of acid–base reactions. The Lewis theory is based on electronic structure. A Lewis base is a compound that can give an electron pair to a Lewis acid, a compound that can accept an electron pair.
In the Lewis theory, a base is an electron pair donor which can share a pair of electrons with an electron acceptor which is described as a Lewis acid. [4] The Lewis theory is more general than the Brønsted model because the Lewis acid is not necessarily a proton, but can be another molecule (or ion) with a vacant low-lying orbital which can ...
Lewis successfully contributed to chemical thermodynamics, photochemistry, and isotope separation, and is also known for his concept of acids and bases. [8] Lewis also researched on relativity and quantum physics, and in 1926 he coined the term "photon" for the smallest unit of radiant energy. [9] [10]
As early as 1938, G. N. Lewis pointed out that the relative strength of an acid or base depended upon the base or acid against which it was measured. [1] No single rank order of acid or base strength can predict the energetics of the cross reaction. Consider the following pair of acid–base reactions:. 4F-C 6 H 4 OH + OEt 2 −ΔH = 5.94 kcal/mole
On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6 × 10 −10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.