enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Well-order - Wikipedia

    en.wikipedia.org/wiki/Well-order

    Every well-ordered set is uniquely order isomorphic to a unique ordinal number, called the order type of the well-ordered set. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a well-founded relation), the proof technique of ...

  3. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Then, by the well-ordering principle, there is a least element ; cannot be prime since a prime number itself is considered a length-one product of primes. By the definition of non-prime numbers, n {\displaystyle n} has factors a , b {\displaystyle a,b} , where a , b {\displaystyle a,b} are integers greater than one and less than n ...

  4. Well-ordering theorem - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_theorem

    In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are ...

  5. Order type - Wikipedia

    en.wikipedia.org/wiki/Order_type

    Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.

  6. Von Neumann cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cardinal...

    That such an ordinal exists and is unique is guaranteed by the fact that U is well-orderable and that the class of ordinals is well-ordered, using the axiom of replacement. With the full axiom of choice , every set is well-orderable , so every set has a cardinal; we order the cardinals using the inherited ordering from the ordinal numbers.

  7. Ordinal number - Wikipedia

    en.wikipedia.org/wiki/Ordinal_number

    The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.

  8. AOL Mail - AOL Help

    help.aol.com/products/aol-webmail

    Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.

  9. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    The order of a well-ordered set is described by an ordinal number. For instance, 3 is the ordinal number of the set {0, 1, 2} with the usual order 0 < 1 < 2; and ω is the ordinal number of the set of all natural numbers ordered the usual way. Neglecting the order, we are left with the cardinal number |N| = |ω| =